A Multi-Niche Microvascularized Human Bone-Marrow-on-a-Chip

Author:

Nelson Michael R.,Ghoshal Delta,Mejías Joscelyn C.,Frey Rubio David,Keith Emily,Roy KrishnenduORCID

Abstract

AbstractThe human bone marrow (hBM) is a complex organ critical for hematopoietic and immune homeostasis, and where many cancers metastasize. Yet, understanding the fundamental biology of the hBM in health and diseases remain difficult due to complexity of studying or manipulating the BM in humans. Accurate in vitro models of the hBM microenvironment are critical to further our understanding of the BM niche and advancing new clinical interventions. Although, in vitro culture models that recapitulate some key components of the BM niche have been reported, there are no examples of a fully human, in vitro, organoid platform that incorporates the various niches of the hBM - specifically the endosteal, central marrow, and perivascular niches – thus limiting their physiological relevance. Here we report an hBM-on-a-chip that incorporates these three niches in a single micro-physiological device. Osteogenic differentiation of hMSCs produced robust mineralization on the PDMS surface (“bone layer”) and subsequent seeding of endothelial cells and hMSCs in a hydrogel network (“central marrow”) created an interconnected vascular network (“perivascular niche”) on top. We show that this multi-niche hBM accurately mimics the ECM composition, allows hematopoietic progenitor cell proliferation and migration, and is affected by radiation. A key finding is that the endosteal niche significantly contributes to hBM physiology. Taken together, this multi-niche micro-physiological system opens up new opportunities in hBM research and therapeutics development, and can be used to better understand hBM physiology, normal and impaired hematopoiesis, and hBM pathologies, including cancer metastasis, multiple myelomas, and BM failures.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

1. Hematopoietic Stem Cell and Its Bone Marrow Niche

2. The bone marrow niche for haematopoietic stem cells

3. The hematopoietic stem cell niche: what are we trying to replicate?;Journal of Chemical Technology & Biotechnology,2008

4. Bone-marrow haematopoietic-stem-cell niches

5. Engineering Human Bone Marrow Proxies;Cell Stem Cell,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3