Elaboration of the corticosteroid synthesis pathway in primates through a multi-step enzyme

Author:

Olson-Manning Carrie F.

Abstract

AbstractMetabolic networks are complex cellular systems dependent on the interactions among, and regulation of, the enzymes in the network. However, the mechanisms that lead to the expansion of networks are not well understood. While gene duplication is a major driver of the expansion and functional evolution of metabolic networks, the effect and fate of retained duplicates in a network is poorly understood. Here, I study the evolution of an enzyme family that performs multiple subsequent enzymatic reactions in the corticosteroid pathway in primates to illuminate the mechanisms that shape network components following duplication. The products of the pathway (aldosterone, corticosterone, and cortisol) are steroid hormones that regulate metabolism and stress in tetrapods. These steroids are synthesized by a multi-step enzyme Cytochrome P450 11B (CYP11B) that performs subsequent steps on different carbon atoms of the steroid derivatives. Through ancestral state reconstruction andin vitrocharacterization, I find the ancestor of the CYP11B1 and CYP11B2 paralogs (in primates) had moderate ability to synthesize cortisol and aldosterone. Following duplication in the primate lineage the CYP11B1 homolog specialized on the production of cortisol while its paralog, CYP11B2, maintained its ability to perform multiple subsequent steps as in the ancestral pathway. Unlike CYP11B1, CYP11B2 could not specialize on the production of aldosterone because it is constrained to perform earlier steps in the corticosteroid synthesis pathway to achieve the final product aldosterone. These results suggest that pathway context, along with tissue-specific regulation, both play a role in shaping potential outcomes of metabolic network elaboration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3