A single-cell atlas of the human healthy airways

Author:

Deprez Marie,Zaragosi Laure-EmmanuelleORCID,Truchi Marin,Garcia Sandra Ruiz,Arguel Marie-Jeanne,Lebrigand Kevin,Paquet Agnès,Pee’r Dana,Marquette Charles-Hugo,Leroy Sylvie,Barbry PascalORCID

Abstract

AbstractRationaleThe respiratory tract constitutes an elaborated line of defense based on a unique cellular ecosystem. Single-cell profiling methods enable the investigation of cell population distributions and transcriptional changes along the airways.MethodsWe have explored cellular heterogeneity of the human airway epithelium in 10 healthy living volunteers by single-cell RNA profiling. 77,969 cells were collected by bronchoscopy at 35 distinct locations, from the nose to the 12th division of the airway tree.ResultsThe resulting atlas is composed of a high percentage of epithelial cells (89.1%), but also immune (6.2%) and stromal (4.7%) cells with peculiar cellular proportions in different sites of the airways. It reveals differential gene expression between identical cell types (suprabasal, secretory, and multiciliated cells) from the nose (MUC4, PI3, SIX3) and tracheobronchial (SCGB1A1, TFF3) airways. By contrast, cell-type specific gene expression was stable across all tracheobronchial samples. Our atlas improves the description of ionocytes, pulmonary neuro-endocrine (PNEC) and brush cells, which are likely derived from a common population of precursor cells. We also report a population of KRT13 positive cells with a high percentage of dividing cells which are reminiscent of “hillock” cells previously described in mouse.ConclusionsRobust characterization of this unprecedented large single-cell cohort establishes an important resource for future investigations. The precise description of the continuum existing from nasal epithelium to successive divisions of lung airways and the stable gene expression profile of these regions better defines conditions under which relevant tracheobronchial proxies of human respiratory diseases can be developed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3