Mechanism of action of rigosertib does not involve tubulin binding

Author:

Baker Stacey J.,Cosenza Stephen C.,Athuluri-Divakar Saikrishna,Reddy M.V. Ramana,Vasquez-Del Carpio Rodrigo,Jain Rinku,Aggarwal Aneel K,Reddy E. Premkumar

Abstract

SUMMARYRigosertib is a novel benzyl styryl sulfone that inhibits the growth of a wide variety of human tumor cellsin vitroandin vivoand is currently in Phase III clinical trials. We recently provided structural and biochemical evidence to show that rigosertib acts as a RAS-mimetic by binding to Ras Binding Domains (RBDs) of the RAF and PI3K family proteins and disrupts their binding to RAS. In a recent study, Jost et al (2017) attributed the mechanism of action of rigosertib to microtubule-binding. In these studies, rigosertib was obtained from a commercial vendor. We have been unable to replicate the reported results with clinical grade rigosertib, and hence compared the purity of clinical grade and commercially sourced rigosertib. We find that the commercially sourced rigosertib contains approximately 5% ON01500, a potent inhibitor of tubulin polymerization. Clinical grade rigosertib, which is free of this impurity, does not exhibit tubulin binding activity.In vivo, cell lines that express mutant β-tubulin (TUBBL240F) were also reported to be resistant to the effects of rigosertib. However, our studies showed that both wild-type and TUBBL240F-expressing cells failed to proliferate in the presence of rigosertib at concentrations that are lethal to wild-type cells. Morphologically, we find that rigosertib, at lethal concentrations, induced a senescence-like phenotype in the small percentage of both wild-type and TUBBL240F-expressing cells that survive in the presence of rigosertib. Our results suggest that TUBBL240F expressing cells are more prone to undergo senescence in the presence of rigosertib as well as BI2536, an unrelated ATP-competitive pan-PLK inhibitor. The appearance of these senescent cells could be incorrectly scored as resistant cells in flow cytometric assays using short term cultures.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3