Malaria transmission assisted by interaction between Plasmodium α-tubulin-1 and Anopheles FREP1 protein

Author:

Zhang Genwei,Niu Guodong,Perez Laura,Wang Xiaohong,Li JunORCID

Abstract

ABSTRACTPassage of Plasmodium through a mosquito midgut is essential for malaria transmission. FREP1, a peritrophic matrix protein in a mosquito midgut, binds to the parasite and mediates Plasmodium infection in Anopheles. The FREP1-mediated Plasmodium invasion pathway is highly conserved across multiple species of Plasmodium and Anopheles. Through pulldown, nine P. berghei proteins were co-precipitated with FREP1-conjugated beads. After cloning these nine genes from P. berghei and expressing them in insect cells, six of them were confirmed to interact with recombinant FREP1 protein. Among them, α-tubulin-1 and heat shock protein 70 (Hsp70) were highly conserved in Plasmodium species with >95% identity. Thus, P. falciparum α-tubulin-1 and Hsp70 were cloned and expressed in E. coli to stimulate antibody (Ab) in mice. Our results showed that anti-serum against P. falciparum α-tubulin-1 significantly inhibited P. falciparum transmission to An. gambiae, while Ab against P. falciparum Hsp70 serum did not. The polyclonal Ab against human α-tubulin did not interfere formation of ookinetes, however, significantly reduced the number of P. falciparum oocysts in An. gambiae midguts. Moreover, fluorescence microscope assays showed that anti-α-tubulin Ab bound to impermeable Plasmodium ookinete apical invasive apparatus. Therefore, we propose that the interaction between Anopheles FREP1 protein and Plasmodium α-tubulin-1 directs the ookinete invasive apparatus towards midgut peritrophic matrix for the efficient passage of the parasite. Anopheles FREP1 and Plasmodium α-tubulin-1 are potential targets for blocking malaria transmission to the mosquito host.AUTHOR SUMMARYThe molecular mechanisms of malaria transmission to mosquito are not well-understood. FREP1 proteins in mosquito midget PM has been proved to mediate malaria transmission by binding to parasite ookinetes. Here we reported that Plasmodium parasite α-tubulin-1 is an FREP1 binding partner. We initially identified the α-tubulin-1 through the FREP1-pulldown assay; Then we cloned P. falciparum α-tubulin-1, and demonstrated that the insect cell expressed recombinant Plasmodium α-tubulin-1 bound to FREP1 in vitro; Next, mouse anti-serum against P. falciparum α-tubulin-1 was found to inhibit P. falciparum transmission to An. gambiae. P. falciparum α-tubulin-1 shares >84% identical amino acid sequence with human α-tubulin, purified Ab against human α-tubulin significantly inhibited malaria transmission. Anti-human α-tubulin Ab did not interfere the gametocyte-to-ookinetes conversion. Final, we found that anti-α-tubulin Ab bound to the apical end of impermeable ookinetes. Structurally, ookinete invasive apparatus locates at the apical opening. Therefore, we propose that the interaction between Anopheles midgut FREP1 protein and Plasmodium apical α-tubulin-1 directs the ookinete invasive apparatus towards midgut PM for the efficient parasite invasion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3