PERSIST: A programmable RNA regulation platform using CRISPR endoRNases

Author:

DiAndreth BreannaORCID,Wauford Noreen,Hu Eileen,Palacios Sebastian,Weiss RonORCID

Abstract

ABSTRACTRegulation of transgene expression is becoming an integral component of gene therapies, cell therapies and biomanufacturing. However, transcription factor-based regulation upon which the majority of such applications are based suffers from complications such as epigenetic silencing, which limits the longevity and reliability of these efforts. Genetically engineered mammalian cells used for cell therapies and biomanufacturing as well as newer RNA-based gene therapies would benefit from post-transcriptional methods of gene regulation, but few such platforms exist that enable sophisticated programming of cell behavior. Here we engineer the 5’ and 3’ untranslated regions of transcripts to enable robust and composable RNA-level regulation through transcript cleavage and, in particular, create modular RNA-level OFF- and ON-switch motifs. We show that genomically introduced transgenes exhibit resistance to silencing when regulated using this platform compared to those that are transcriptionally-regulated. We adapt nine CRISPR-specific endoRNases as RNA-level “activators” and “repressors” and show that these can be easily layered and composed to reconstruct genetic programming topologies previously achieved with transcription factor-based regulation including cascades, all 16 two-input Boolean logic functions, positive feedback, a feed-forward loop and a putative bistable toggle switch. The orthogonal, modular and composable nature of this platform as well as the ease with which robust and predictable gene circuits are constructed holds promise for their application in gene and cell therapies.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3