Genome-wide functional analysis of hot pepper immune receptors reveals an autonomous NLR cluster in seed plants

Author:

Lee Hye-Young,Mang Hyunggon,Choi Eun-Hye,Seo Ye-Eun,Kim Myung-Shin,Oh Soohyun,Kim Saet-Byul,Choi DoilORCID

Abstract

AbstractPlants possess hundreds of intracellular immune receptors encoding nucleotide-binding domain and leucine-rich repeat (NLR) proteins. Autoactive NLRs, in some cases a specific NLR domain, induce plant cell death in the absence of pathogen infection. In this study, we identified a group of NLRs (G10) carrying autoactive coiled-coil (CC) domains in pepper (Capsicum annuum L. cv. CM334) by genome-wide transient expression analysis. The G10-CC-mediated cell death mimics hypersensitive response (HR) cell death triggered by interaction between NLR and effectors derived from pathogens. Sequence alignment and mutagenesis analyses revealed that the intact α1 helix of G10-CCs is critical for both G10-CC- and R gene-mediated HR cell death. The cell death induced by G10-CCs does not require known helper NLRs, suggesting G10-NLRs are novel singleton NLRs. We also found that G10-CCs localize in the plasma membrane as Arabidopsis singleton NLR ZAR1. Extended studies revealed that autoactive G10-CCs are well conserved in other Solanaceae plants, including tomato, potato, and tobacco, as well as a monocot plant, rice. Furthermore, G10-NLR is an ancient form of NLR that present in all tested seed plants (spermatophytes). Our studies not only uncover the autonomous NLR cluster in plants but also provide powerful resources for dissecting the underlying molecular mechanism of NLR-mediated cell death in plants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3