Abstract
AbstractHuman stem-cell-derived extracellular vesicles (EVs) are currently being investigated for cell-free therapy in regenerative medicine applications, but their biodistribution and tropic properties for homing to injured tissues are largely unknown. Here, we labeled EVs with magnetic nanoparticles to create magneto-EVs that can be tracked by magnetic resonance imaging (MRI). Superparamagnetic iron oxide (SPIO) nanoparticles were coated with polyhistidine tags, which enabled purification of labeled EVs by efficiently removing unencapsulated SPIO particles in the solution. The biodistribution of systemically injected human induced pluripotent stem cell (iPSC)-derived magneto-EV was assessed in three different animal models of kidney injury and myocardial ischemia. Magneto-EVs were found to selectively home to the injury sites and conferred substantial protection in a kidney injury model. In vivo MRI tracking of magnetically labeled EVs represents a new powerful method to assess and quantify their whole-body distribution, which may help optimize further development of EV-based cell-free therapy.
Publisher
Cold Spring Harbor Laboratory