Reclassification of SLC22 Transporters: Analysis of OAT, OCT, OCTN, and other Family Members Reveals 8 Functional Subgroups

Author:

Engelhart DarcyORCID,Granados Jeffry C.ORCID,Shi DaORCID,Saier MiltonORCID,Baker MichaelORCID,Abagyan Ruben,Nigam Sanjay K.

Abstract

AbstractAmong transporters, the SLC22 family is emerging as a central hub of endogenous physiology. The family consists of organic anion transporters (OATs), organic cation transporters (OCTs) and zwitterion transporters (OCTNs). Despite being known as “drug” transporters, these multi-specific, oligo-specific, and relatively mono-specific transporters facilitate the movement of metabolites and key signaling molecules. An in-depth reanalysis supports a reassignment of these proteins into eight functional subgroups with four new subgroups arising from the previously defined OAT subclade. These OAT subgroups are: OATS1 (SLC22A6, SLC22A8, and SLC22A20), OATS2 (SLC22A7), OATS3 (SLC22A11, SLC22A12, and Slc22a22), and OATS4 (SLC22A9, SLC22A10, SLC22A24, and SLC22A25). We propose merging the OCTN (SLC22A4, SLC22A5, and Slc22a21) and OCT-related (SLC22A15 and SLC22A16) subclades into the OCTN/OCTN-related subgroup. Functional support for the eight subgroups comes from network analysis of data from GWAS, in vivo models, and in vitro assays. These data emphasize shared substrate specificity of SLC22 transporters for characteristic metabolites such as prostaglandins, uric acid, carnitine, creatinine, and estrone sulfate. Some important subgroup associations include: OATS1 with metabolites, signaling molecules, uremic toxins and odorants, OATS2 with cyclic nucleotides, OATS3 with uric acid, OATS4 with conjugated sex hormones, particularly etiocholanolone glucuronide, OCT with monoamine neurotransmitters, and OCTN/OCTN-related with ergothioneine and carnitine derivatives. The OAT-like and OAT-related subgroups remain understudied and therefore do not have assigned functionality. Relatedness within subgroups is supported by multiple sequence alignments, evolutionarily conserved protein motifs, genomic localization, and tissue expression. We also highlight low level sequence similarity of SLC22 members with other non-transport proteins. Our data suggest that the SLC22 family can work among itself, as well as with other transporters and enzymes, to optimize levels of numerous metabolites and signaling molecules, as proposed by the Remote Sensing and Signaling Theory.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3