Mycorrhiza Co-Association with Aspilia pruliseta Schweif and Phosphorus Uptake Effects on Growth Attributes of Gadam Sorghum in Selected Sites in Kenya

Author:

Muchoka J.P.ORCID,Mugendi D.N,Njiruh P.N,Onyari C.N.,Mbugua P.K.,Njeru E.M.

Abstract

ABSTRACTMycorrhiza fungi are important components of soil microbiota in the rhizosphere and greatly influence uptake of mineral elements to plants. A green house experiment was conducted at the University of Embu. The experiment involved use of sterilized polythene potting material sized 30 cm by 40 cm. The pots were filled two thirds the height of the potting material with soil from a predetermined source in Gakurungu, Tunyai and Kanyuombora in the upper eastern region in Kenya. The soil used in the pots was collected from the rhizosphere of Aspilia pruliseta Schweif vegetation as well as adjacent areas without this vegetation as a control at 0-20 cm, 21-40 cm and 41-60 cm for each of the soil types (silty clay, silt loam and sandy loam) used in the experiment. Two sorghum seeds inoculated with mycorrhiza fungi were planted in each pot and a similar number of pots planted with un inoculated sorghum seeds as a control. Each of the 4 treatments mentioned above, was replicated four times giving n=144. Each pot was watered after every two days using a two-litre watering can for the first one week. Thereafter, watering regime was reduced to once a week but ensuring the pots remained moist. Watering was done uniformly to all the pots. This was maintained for a period of thirty five days. Data was analysed using SAS edition 8.2. Seed emergence, hypocotyl development and stand count were enhanced at P≤0.05 in both mycorrhiza fungi inoculated gadam sorghum seeds and in pots whose soils were taken from the rhizosphere of Aspilia pruliseta plants. The growth attributes had a positive correlation to yield at 95% confidence. Soil phosphate level was enhanced in both cases of gadam seed inoculation with mycorrhiza and in soils previously grown Aspilia pruliseta vegetation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3