Smash++: an alignment-free and memory-efficient tool to find genomic rearrangements

Author:

Hosseini Morteza,Pratas Diogo,Morgenstern Burkhard,Pinho Armando J.

Abstract

AbstractBackgroundThe development of high-throughput sequencing technologies and, as its result, the production of huge volumes of genomic data, has accelerated biological and medical research and discovery. Study on genomic rearrangements is crucial due to their role in chromosomal evolution, genetic disorders and cancer;ResultsWe present Smash++, an alignment-free and memory-efficient tool to find and visualize small- and large-scale genomic rearrangements between two DNA sequences. This computational solution extracts information contents of the two sequences, exploiting a data compression technique, in order for finding rearrangements. We also present Smash++ visualizer, a tool that allows the visualization of the detected rearrangements along with their self- and relative complexity, by generating an SVG (Scalable Vector Graphics) image;ConclusionsTested on several synthetic and real DNA sequences from bacteria, fungi, Aves and mammalia, the proposed tool was able to accurately find genomic rearrangements. The detected regions complied with previous studies which took alignment-based approaches or performed FISH (Fluorescence in situ hybridization) analysis. The maximum peak memory usage among all experiments was ~1 GB, which makes Smash++ feasible to run on present-day standard computers.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3