Hydroxide Ion Carrier for Proton Pump in Bacteriorhodopsin: Primary Proton Transfer

Author:

Imai M.,Ono J.,Nishimura Y.,Nakai H.ORCID

Abstract

ABSTRACTBacteriorhodopsin (BR) is a model protein for light-driven proton pumps, where the vectorial active proton transport results in light-energy conversion. To clarify the microscopic mechanism of primary proton transfer from retinal Schiff base (SB) to Asp85 in BR, herein we performed quantum-mechanical metadynamics simulations of the whole BR system (∼3800 atoms). The simulations showed a novel proton transfer mechanism, viz. hydroxide ion mechanism, in which the deprotonation of specific internal water (Wat452) yields the protonation of Asp85 via Thr89, after which the resulting hydroxide ion accepts the remaining proton from retinal SB. Furthermore, systematic investigations adopting four sequential snapshots obtained by the time-resolved serial femtosecond crystallography revealed that proton transfer took 2–5.25 μs on the photocycle. The presence of Wat401, which is the main difference between snapshots at 2 and 5.25 μs, is found to be essential in assisting the primary proton transfer.SIGNIFICANCEBacteriorhodopsin (BR), the benchmark of light-driven proton pumps, has attracted much attention from diverse areas in terms of energy conversion. Despite the significant experimental and theoretical efforts, the microscopic mechanism of the proton transfers in BR is not completely unveiled. In this study, quantum-mechanical molecular dynamics simulations of whole BR system were performed to elucidate the primary proton transfer in the L intermediate state with the latest snapshots obtained from X-ray free electron laser. As a result, it is found that the hydroxide ion originating from the specific internal water, which appears at the active site only in the L state, acts as a carrier for the primary proton transfer, demonstrating the importance of hydroxide ions in proton pumps.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3