Evolutionary genomics of structural variation in Asian rice (Oryza sativa) and its wild progenitor (O. rufipogon)

Author:

Kou YixuanORCID,Liao Yi,Toivainen TuomasORCID,Lv YuandaORCID,Tian Xinmin,Emerson J.J,Gaut Brandon S.ORCID,Zhou YongfengORCID

Abstract

ABSTRACTStructural variants (SVs) are a largely unstudied feature of plant genome evolution, despite the fact that SVs contribute substantially to phenotypes. In this study, we discovered structural variants (SVs) across a population sample of 358 high-coverage, resequenced genomes of Asian rice (Oryza sativa) and its wild ancestor (O. rufipogon). In addition to this short-read dataset, we also inferred SVs from whole-genome assemblies and long-read data. Comparisons among datasets revealed different features of genome variability. For example, genome alignment identified a large (~4.3 Mb) inversion in indica rice varieties relative to an outgroup, and long-read analyses suggest that ~9% of genes from this outgroup are hemizygous. We focused, however, on the resequencing sample to investigate the population genomics of SVs. Clustering analyses with SVs recapitulated the rice cultivar groups that were also inferred from SNPs. However, the site-frequency spectrum of each SV type -- which included inversions, duplications, deletions, translocations and mobile element insertions -- was skewed toward lower frequency variants than synonymous SNPs, suggesting that SVs are predominantly deleterious. The strength of these deleterious effects varied among SV types, with inversions especially deleterious, and across transposable element (TE) families. Among TEs SINE and mariner insertions were especially deleterious, due to stronger selection against their insertions. We also used SVs to study domestication by contrasting between rice and O. rufipogon. Cultivated genomes contained ~25% more derived SVs than O. rufipogon, suggesting these deleterious SVs contribute to the cost of domestication. We also used SVs to study the effects of positive selection on the rice genome. Generally, the search for domestication genes were enriched for known candidates, suggesting some utility for SVs towards this purpose. More importantly, we detected hundreds to thousands of genes gained and lost during domestication, many of which are predicted to contribute to traits of agronomic interest.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3