Distinct transcriptomic cell types and neural circuits of the subiculum and prosubiculum along the dorsal-ventral axis

Author:

Ding Song-LinORCID,Yao Zizhen,Hirokawa Karla E.,Nguyen Thuc Nghi,Graybuck Lucas T.,Fong Olivia,Bohn Phillip,Ngo Kiet,Smith Kimberly A.,Koch Christof,Phillips John W.,Lein Ed S.,Harris Julie A.,Tasic Bosiljka,Zeng Hongkui

Abstract

SummarySubicular region plays important roles in spatial processing and many cognitive functions and these were mainly attributed to subiculum (Sub) rather than prosubiculum (PS). Using single-cell RNA-sequencing (scRNA-seq) technique we have identified up to 27 distinct transcriptomic clusters/cell types, which were registered to anatomical sub-domains in Sub and PS. Based on reliable molecular markers derived from transcriptomic clustering and in situ hybridization data, the precise boundaries of Sub and PS have been consistently defined along the dorsoventral (DV) axis. Using these borders to evaluate Cre-line specificity and tracer injections, we have found bona fide Sub projections topographically to structures important for spatial processing and navigation. In contrast, PS along DV axis sends its outputs to widespread brain regions crucial for motivation, emotion, reward, stress, anxiety and fear. Brain-wide cell-type specific projections of Sub and PS have also been revealed using specific Cre-lines. These results reveal two molecularly and anatomically distinct circuits centered in Sub and PS, respectively, providing a consistent explanation to historical data and a clearer foundation for future functional studies.Highlights27 transcriptomic cell types identified in and spatially registered to “subicular” regions.Anatomic borders of “subicular” regions reliably determined along dorsal-ventral axis.Distinct cell types and circuits of full-length subiculum (Sub) and prosubiculum (PS).Brain-wide cell-type specific projections of Sub and PS revealed with specific Cre-lines.In BriefDing et al. show that mouse subiculum and prosubiculum are two distinct regions with differential transcriptomic cell types, subtypes, neural circuits and functional correlation. The former has obvious topographic projections to its main targets while the latter exhibits widespread projections to many subcortical regions associated with reward, emotion, stress and motivation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3