Quantification of Microtubule Stutters: Dynamic Instability Behaviors that are Strongly Associated with Catastrophe

Author:

Mahserejian Shant M.,Scripture Jared P.,Mauro Ava J.,Lawrence Elizabeth J.,Jonasson Erin M.,Murray Kristopher S.,Li Jun,Gardner Melissa,Alber Mark,Zanic Marija,Goodson Holly V.

Abstract

ABSTRACTMicrotubules (MTs) are cytoskeletal fibers that undergo dynamic instability (DI), a remarkable process involving phases of growth and shortening separated by stochastic transitions called catastrophe and rescue. Dissecting dynamic instability mechanism(s) requires first characterizing and quantifying these dynamics, a subjective process that often ignores complexity in MT behavior. We present aStatisticalTool forAutomatedDynamicInstabilityAnalysis (STADIA), which identifies and quantifies not only growth and shortening, but also a category of intermediate behaviors that we term ‘stutters.’ During stutters, the rate of MT length change tends to be smaller in magnitude than during typical growth or shortening phases. Quantifying stutters and other behaviors with STADIA demonstrates that stutters precede most catastrophes in our dimer-scale MT simulations andin vitroexperiments, suggesting that stutters are mechanistically involved in catastrophes. Related to this idea, we show that the anti-catastrophe factor CLASP2γ works by promoting the return of stuttering MTs to growth. STADIA enables more comprehensive and data-driven analysis of MT dynamics compared to previous methods. The treatment of stutters as distinct and quantifiable DI behaviors provides new opportunities for analyzing mechanisms of MT dynamics and their regulation by binding proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3