Genome mining of the citrus pathogenElsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters

Author:

Jeffress Sarah,Arun-Chinnappa Kiruba,Stodart BenORCID,Vaghefi Niloofar,Tan Yu Pei,Ash GavinORCID

Abstract

Abstract:Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus varieties around the world. Known pathotypes ofE. fawcettiiare based on host range; additionally, cryptic pathotypes have been reported and more novel pathotypes are thought to exist.E. fawcettiiproduces elsinochrome, a non-host selective toxin which contributes to virulence. However, the mechanisms involved in potential pathogen-host interactions occurring prior to the production of elsinochrome are unknown, yet the host-specificity observed among pathotypes suggests a reliance upon such mechanisms. In this study we have generated a whole genome sequencing project forE. fawcettii,producing an annotated draft assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage of transposable elements. The assembly showed evidence of AT-rich regions, potentially indicating genomic regions with increased plasticity. Using a variety of computational tools, we mined theE. fawcettiigenome for potential virulence genes as candidates for future investigation. A total of 1,280 secreted proteins and 203 candidate effectors were predicted and compared to those of other necrotrophic (Botrytis cinerea,Parastagonospora nodorum,Pyrenophora tritici-repentis,Sclerotinia sclerotiorumandZymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans,Magnaporthe oryzae,Rhynchosporium communeandVerticillium dahliae) and biotrophic (Ustilago maydis) plant pathogens. Genomic and proteomic features of known fungal effectors were analysed and used to guide the prioritisation of 77 candidate effectors ofE. fawcettii. Additionally, 378 carbohydrate-active enzymes were predicted and analysed for likely secretion and sequence similarity with known virulence genes. Furthermore, secondary metabolite prediction indicated nine additional genes potentially involved in the elsinochrome biosynthesis gene cluster than previously described. A further 21 secondary metabolite clusters were predicted, some with similarity to known toxin producing gene clusters. The candidate virulence genes predicted in this study provide a comprehensive resource for future experimental investigation into the pathogenesis ofE. fawcettii.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3