Design of DNA Origami Diamond Photonic Crystals

Author:

Park Sung Hun,Park Haedong,Hur KahyunORCID,Lee SeungwooORCID

Abstract

AbstractSelf-assembled photonic crystals have proven to be a fascinating class of photonic materials for non-absorbing structural colorizations over large areas and in diverse relevant applications, including tools for on-chip spectrometers and biosensors, platforms for reflective displays, and templates for energy devices. The most prevalent building blocks for the self-assembly of photonic crystals are spherical colloids and block copolymers (BCPs) due to the generic appeal of these materials, which can be crafted into large-area 3D lattices. However, due to the intrinsic limitations of these structures, these two building blocks are difficult to assemble into a direct rod-connected diamond lattice, which is considered to be a champion photonic crystal. Here, we present a DNA origami-route for a direct rod-connected diamond photonic crystal exhibiting a complete photonic bandgap (PBG) in the visible regime. Using a combination of electromagnetic, phononic, and mechanical numerical analyses, we identify (i) the structural constraints of the 50 megadalton-scale giant DNA origami building blocks that could self-assemble into a direct rod-connected diamond lattice with high accuracy, and (ii) the elastic moduli that are essentials for maintaining lattice integrity in a buffer solution. A solution molding process could enable the transformation of the as-assembled DNA origami lattice into a porous silicon- or germanium-coated composite crystal with enhanced refractive index contrast, in that a champion relative bandwidth for the photonic bandgap (i.e., 0.29) could become possible even for a relatively low volume fraction (i.e., 16 vol%).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3