Author:
Nora Elphège P.,Caccianini Laura,Fudenberg Geoffrey,Kameswaran Vasumathi,Nagle Abigail,Uebersohn Alec,So Kevin,Hajj Bassam,Le Saux Agnès,Coulon Antoine,Mirny Leonid A.,Pollard Katherine S.,Dahan Maxime,Bruneau Benoit G.
Abstract
SummaryCurrent models propose that boundaries of mammalian topologically associating domains (TADs) arise from the ability of the CTCF protein to stop extrusion of chromatin loops by cohesin proteins (Merkenschlager & Nora, 2016; Fudenberg, Abdennur, Imakaev, Goloborodko, & Mirny, 2017). While the orientation of CTCF motifs determines which pairs of CTCF sites preferentially stabilize DNA loops (de Wit et al., 2015; Guo et al., 2015; Rao et al., 2014; Vietri Rudan et al., 2015), the molecular basis of this polarity remains mysterious. Here we report that CTCF positions cohesin but does not control its overall binding or dynamics on chromatin by single molecule live imaging. Using an inducible complementation system, we found that CTCF mutants lacking the N-terminus cannot insulate TADs properly, despite normal binding. Cohesin remained at CTCF sites in this mutant, albeit with reduced enrichment. Given that the orientation of the CTCF motif presents the CTCF N-terminus towards cohesin as it translocates from the interior of TADs, these observations provide a molecular explanation for how the polarity of CTCF binding sites determines the genomic distribution of chromatin loops.
Publisher
Cold Spring Harbor Laboratory
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献