An improved ATP FRET sensor for yeast shows heterogeneity during nutrient transitions

Author:

Botman DennisORCID,van Heerden Johan H.ORCID,Teusink Bas

Abstract

AbstractAdenosine 5-triphosphate (ATP) is the main free energy carrier in metabolism. In budding yeast, shifts to glucose-rich conditions cause dynamic changes in ATP levels, but it is unclear how heterogeneous these dynamics are at the single-cell level. Furthermore, pH also changes and affects readout of fluorescence-based biosensors for single-cell measurements. To measure ATP changes reliably in single yeast cells, we developed yAT1.03, an adapted version of the AT1.03 ATP biosensor, that is pH-insensitive. We show that pregrowth conditions largely affect ATP dynamics during transitions. Moreover, single-cell analyses showed a large variety in ATP responses, which implies large differences of glycolytic startup between individual cells. We found three clusters of dynamic responses, and show that a small subpopulation of wild type cells reached an imbalanced state during glycolytic startup, characterised by low ATP levels. These results confirm the need for new tools to study dynamic responses of individual cells in dynamic environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3