Compensatory mutation can drive gene regulatory network evolution

Author:

Wang YifeiORCID,Richards Marios,Dorus Steve,Priest Nicholas K.,Bryson Joanna J.ORCID

Abstract

AbstractGene regulatory networks underlie every aspect of life; better understanding their assembly would better our understanding of evolution more generally. For example, evolutionary theory typically assumed that low-fitness intermediary pathways are not a significant factor in evolution, yet there is substantial empirical evidence of compensatory mutation. Here we revise theoretical assumptions to explore the possibility that compensatory mutation may drive rapid evolutionary recovery. Using a well-establishedin silicomodel of gene regulatory networks, we show that assuming only that deleterious mutations are not fatal, compensatory mutation is surprisingly frequent. Further, we find that it entails biases that drive the evolution of regulatory pathways. In our simulations, we find compensatory mutation to be common during periods of relaxed selection, with 8-15% of degraded networks having regulatory function restored by a single randomly-generated additional mutation. Though this process reduces average robustness, proportionally higher robustness is found in networks where compensatory mutations occur close to the deleterious mutation site, or where the compensatory mutation results in a large regulatory effect size. This location- and size-specific robustness systematically biases which networks are purged by selection for network stability, producing emergent changes to the population of regulatory networks. We show that over time, large-effect and co-located mutations accumulate, assuming only that episodes of relaxed selection occur, even very rarely. This accumulation results in an increase in regulatory complexity. Our findings help explain a process by which large-effect mutations structure complex regulatory networks, and may account for the speed and pervasiveness of observed occurrence of compensatory mutation, for example in the context of antibiotic resistance, which we discuss. If sustained byin vitroexperiments, these results promise a significant breakthrough in the understanding of evolutionary and regulatory processes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3