Binary and analog variation of synapses between cortical pyramidal neurons

Author:

Dorkenwald SvenORCID,Turner Nicholas L.ORCID,Macrina ThomasORCID,Lee Kisuk,Lu Ran,Wu JingpengORCID,Bodor Agnes L.,Bleckert Adam A.ORCID,Brittain DerrickORCID,Kemnitz Nico,Silversmith William M.ORCID,Ih Dodam,Zung Jonathan,Zlateski Aleksandar,Tartavull Ignacio,Yu Szi-Chieh,Popovych Sergiy,Wong William,Castro Manuel,Jordan Chris S.,Wilson Alyssa M.,Froudarakis Emmanouil,Buchanan JoAnnORCID,Takeno MarcORCID,Torres RusselORCID,Mahalingam Gayathri,Collman ForrestORCID,Schneider-Mizell CaseyORCID,Bumbarger Daniel J.,Li Yang,Becker Lynne,Suckow Shelby,Reimer JacobORCID,Tolias Andreas S.ORCID,Maçarico da Costa NunoORCID,Reid R. ClayORCID,Seung H. SebastianORCID

Abstract

AbstractLearning from experience depends at least in part on changes in neuronal connections. We present the largest map of connectivity to date between cortical neurons of a defined type (L2/3 pyramidal cells), which was enabled by automated analysis of serial section electron microscopy images with improved handling of image defects. We used the map to identify constraints on the learning algorithms employed by the cortex. Previous cortical studies modeled a continuum of synapse sizes (Arellano et al. 2007) by a log-normal distribution (Loewenstein, Kuras, and Rumpel 2011; de Vivo et al. 2017; Santuy et al. 2018). A continuum is consistent with most neural network models of learning, in which synaptic strength is a continuously graded analog variable. Here we show that synapse size, when restricted to synapses between L2/3 pyramidal cells, is well-modeled by the sum of a binary variable and an analog variable drawn from a log-normal distribution. Two synapses sharing the same presynaptic and postsynaptic cells are known to be correlated in size (Sorra and Harris 1993; Koester and Johnston 2005; Bartol et al. 2015; Kasthuri et al. 2015; Dvorkin and Ziv 2016; Bloss et al. 2018; Motta et al. 2019). We show that the binary variables of the two synapses are highly correlated, while the analog variables are not. Binary variation could be the outcome of a Hebbian or other synaptic plasticity rule depending on activity signals that are relatively uniform across neuronal arbors, while analog variation may be dominated by other influences. We discuss the implications for the stability-plasticity dilemma.

Publisher

Cold Spring Harbor Laboratory

Reference90 articles.

1. Adam, Paszke , Chintala Soumith , Chanan Gregory , Yang Edward , Devito Zachary , Lin Zeming , Desmaison Alban , Antiga Luca , and Lerer Adam . 2017. “Automatic Differentiation in Pytorch.” In Proceedings of Neural Information Processing Systems.

2. Advisory Committee to the NIH Director BRAIN Initiative Working Group 2. 2019. “The BRAIN Initiative 2.0: From Cells to Circuits, Toward Cures.” National Institutes of Health.

3. Learning in Neural Networks with Material Synapses

4. Arellano, J. I. , R. Benavides-Piccione , J. DeFelipe , and R. Yuste . 2007. “Ultrastructure of Dendritic Spines: Correlation between Synaptic and Spine Morphologies Front Neurosci 1: 131--143.” CrossRef Medline.

5. Nanoconnectomic upper bound on the variability of synaptic plasticity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3