Transcription-factor binding to replicated DNA

Author:

Bar-Ziv RazORCID,Brodsky Sagie,Chapal Michal,Barkai NaamaORCID

Abstract

SummaryGenome replication perturbs the DNA regulatory environment by displacing DNA-bound proteins, replacing nucleosomes, and introducing dosage-imbalance between regions replicating at different S phase stages. Recently, we showed that these effects are integrated to maintain transcription homeostasis: replicated genes increase in dosage, but their expression remains stable due to replication-dependent epigenetic changes that suppress transcription. Here, we examined whether reduced transcription from replicated DNA results from limited accessibility to regulatory factors, by measuring the time-resolved binding of RNA polymerase II (RNAPII) and specific transcription factors (TFs) to DNA during S phase in budding yeast. We show that RNAPII binding-pattern is largely insensitive to DNA dosage, indicating limited binding to replicated DNA. By contrast, binding of three TFs (Reb1, Abf1 and Rap1) to DNA increased with the increasing DNA dosage. We conclude that the replication-specific chromatin environment remains accessible to regulatory factors, but suppresses RNA polymerase recruitment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3