Viral fitness determines the magnitude of transcriptomic and epigenomic reprogramming of defense responses in plants

Author:

Corrêa Régis L.,Sanz-Carbonell AlejandroORCID,Kogej Zala,Müller Sebastian Y.,López-Gomollón SaraORCID,Gómez GustavoORCID,Baulcombe David C.ORCID,Elena Santiago F.ORCID

Abstract

SUMMARYAlthough epigenetic factors may influence the expression of defense genes in plants, their role in antiviral responses and the impact of viral adaptation and evolution in shaping these interactions are still poorly explored. We used two isolates of turnip mosaic potyvirus (TuMV) with varying degrees of adaptation to Arabidopsis thaliana to address these issues. One of the isolates was experimentally evolved in the plant and presented increased load and virulence relative to the ancestral isolate. The magnitude of the transcriptomic responses were larger for the evolved isolate and indicated a role of innate immunity systems triggered by molecular patterns and effectors in the infection process. Several transposable elements (TEs) located in different chromatin contexts and epigenetic-related genes were also affected. Correspondingly, mutant plants having loss or gain of repressive marks were, respectively, more tolerant and susceptible to TuMV, with a more efficient response against the ancestral isolate. In wild-type plants both isolates induced similar levels of cytosine methylation changes, including in and around TEs and stress-related genes. Results collectively suggested that apart from RNA silencing and basal immunity systems, DNA methylation and histone modification pathways may also be required for mounting proper antiviral defenses in plants and that the effectiveness of this type of regulation strongly depends on the degree of viral adaptation to the host.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3