Discovery, optimization, and cellular activities of 2-(aroylamino)cinnamamide derivatives against colon cancer cells

Author:

Omar Abdelsattar M.,Elhaggar Radwan S.,Safo Martin K.,Abdelghany Tamer M.,Ahmed Mostafa H.,Boothello Rio,Patel Bhaumik B.,Abdel-Bakky Mohamed S.,El-Araby Moustafa E.ORCID

Abstract

ABSTRACTCurcumin and trans-cinnamaldehyde are acrolein-based Michael acceptor compounds that are commonly found in domestic condiments, and known to cause cancer cell death via redox mechanisms. Based on the structural features of these compounds we designed and synthesized several 2-cinnamamido-N-substituted-cinnamamide (bis-cinnamamide) compounds. One of the derivatives, (Z)-2-[(E)-cinnamamido]-3-phenyl-N-propylacrylamide (1512) showed a moderate antiproliferative potency (HT116 cell line inhibition of 32.0 µM ± 2.6) with proven cellular activities leading to apoptosis. Importantly, 1512 exhibited good selectivity toxicity on cancer cells over noncancerous cells (IC50 of C-166 cell lines >100 µM), and low cancer cell resistance at 100 µM dose (growth rate 10.1±1.1%). We subsequently carried out structure activity relationship studies with 1512. Derivatives with electron rich moiety at the aryl ring of the 2-aminocinnamaide moiety exhibited strong antiproliferative action while electron withdrawing groups caused loss of activity. Our most promising compound, 4112 [(Z)-3-(1H-indol-3-yl)-N-propyl-2-[(E)-3-(thien-2-yl)propenamido)propenamide] killed cancer cells at IC50 = 0.89 ± 0.04 µM (Caco-2), 2.85 ± 1.5 (HCT-116) and 1.65 ± 0.07 (HT-29), while exhibiting much weaker potency on C-166 and BHK normal cell lines (IC50 = 71 ± 5.12 and 77.6 ± 6.2 µM, respectively). Cellular studies towards identifying the compounds mechanism of cytotoxic activities revealed that apoptotic induction occurs in part due to oxidative stress. Importantly, the compounds showed inhibition of cancer stem cells that are critical for maintaining the potential for self-renewal and stemness. The results presented here show discovery of Michael addition compounds that potently kill cancer cells by a defined mechanism, with minimal effect on normal noncancerous cell.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3