The proteomic inventory reveals the chloroplast ribosome as nexus within a diverse protein network

Author:

Westrich Lisa Désirée,Gotsmann Vincent Leon,Herkt ClaudiaORCID,Ries FabianORCID,Kazek Tanja,Trösch RaphaelORCID,Ramundo SilviaORCID,Nickelsen Jörg,Armbruster LauraORCID,Wirtz MarkusORCID,Storchová Zuzana,Raeschle Markus,Willmund FelixORCID

Abstract

ABSTRACTChloroplast gene expression is tightly regulated and majorly controlled on the level of protein synthesis. Fine-tuning of translation is vital for plant development, acclimation to environmental challenges and for the assembly of major protein complexes such as the photosynthesis machinery. However, many regulatory mediators and the interaction network of chloroplast ribosomes are not known to date. We report here on a deep proteomic analysis of the plastidic ribosome interaction network inChlamydomonas reinhardtiicells. Affinity-purification of ribosomes was achieved via endogenous affinity tagging of the chloroplast-encoded protein Rpl5, yielding a specific enrichment of >650 chloroplast-localized proteins. The ribosome interaction network was validated for several proteins and provides a new source of mainly conserved factors directly linking translation with central processes such as protein folding, photosystem biogenesis, redox control, RNA maturation, energy and metabolite homeostasis. Our approach provided the first evidence for the existence of a plastidic co-translational acting N-acetyltransferase (cpNAT1). Expression of tagged cpNAT1 confirmed its ribosome-association, and we demonstrated the ability of cpNAT1 to acetylate substrate proteins at their N-terminus. Our dataset establishes that the chloroplast protein synthesis machinery acts as nexus in a highly choreographed, spatially interconnected protein network and underscores its wide-ranging regulatory potential during gene expression.ONE-SENTENCE SUMMARYAffinity purification ofChlamydomonas reinhardtiichloroplast ribosomes and subsequent proteomic analysis revealed a broad spectrum of interactors ranging from global translation control to specific pathways.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3