An experimental workflow identifies nitrogenase proteins ready for expression in plant mitochondria

Author:

Okada S.,Gregg C. M.,Allen R. S.,Menon A.,Hussain D.,Gillespie V.,Johnston E.,Byrne K.,Colgrave M.,Wood C. C.

Abstract

AbstractIndustrial nitrogen fertilizer is intrinsic to modern agriculture yet expensive and environmentally harmful. We aim to reconstitute bacterial nitrogenase function within plant mitochondria to reduce nitrogen fertilizer usage. Many nitrogen fixation (Nif) proteins are required for biosynthesis and function of the mature nitrogenase enzyme, and these will need to be correctly processed and soluble within mitochondria as a pre-requisite for function. Here we present our workflow that assessed processing, solubility and relative abundance of 16Klebsiella oxytocaNif proteins targeted to the plant mitochondrial matrix using an Arabidopsis mitochondrial targeting peptide (MTP). The functional consequence of the N-terminal modifications required for mitochondrial targeting of Nif proteins was tested using bacterial nitrogenase assays. We found that despite the use of the same constitutive promoter and MTP, MTP::Nif processing and relative abundance in plant leaf varied considerably. Assessment of solubility for all MTP::Nif proteins found NifF, M, N, S, U, W, X, Y and Z were soluble, while NifB, E, H, J, K, Q and V were mostly insoluble. Although most Nif proteins tolerated the N-terminal extension as a consequence of mitochondrial processing, this extension in NifM reduced nitrogenase activity to 10% of controls. Using proteomics, we detected a ∼50-fold increase in the abundance of NifM when it contained the N-terminal MTP extension, which may account for this reduction seen in nitrogenase activity. Based on plant mitochondrial processing and solubility, and retention of function in a bacterial assay, our workflow has identified that NifF, N, S, U, W, Y and Z satisfied all these criteria. Future work can now focus on improving these parameters for the remaining Nif components to assemble a complete set of plant-ready Nif proteins for reconstituting nitrogen fixation in plant mitochondria.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3