GCNG: Graph convolutional networks for inferring cell-cell interactions

Author:

Yuan Ye,Bar-Joseph Ziv

Abstract

AbstractSeveral methods have been developed for inferring gene-gene interactions from expression data. To date, these methods mainly focused on intra-cellular interactions. The availability of high throughput spatial expression data opens the door to methods that can infer such interactions both within and between cells. However, the spatial data also raises several new challenges. These include issues related to the sparse, noisy expression vectors for each cell, the fact that several different cell types are often profiled, the definition of a neighborhood of cell and the relatively small number of extracellular interactions. To enable the identification of gene interactions between cells we extended a Graph Convolutional Neural network approach for Genes (GCNG). We encode the spatial information as a graph and use the network to combine it with the expression data using supervised training. Testing GCNG on spatial transcriptomics data we show that it improves upon prior methods suggested for this task and can propose novel pairs of extracellular interacting genes. Finally, we show that the output of GCNG can also be used for down-stream analysis including functional assignment.Supporting website with software and data: https://github.com/xiaoyeye/GCNG.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

1. Deciphering the molecular profile of plaques, memory decline and neuron loss in two mouse models for alzheimer’s disease by deep sequencing;Frontiers in aging neuroscience,2014

2. Spectral networks and locally connected networks on graphs;arXiv preprint,2013

3. Parsimonious gene correlation network analysis (pgcna): a tool to define modular gene co-expression for refined molecular stratification in cancer;NPJ systems biology and applications,2019

4. Gene regulatory network inference from single-cell data using multivariate information measures;Cell systems,2017

5. Spatial organization of the somatosensory cortex revealed by osmfish;Nature methods,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3