Computer-guided Binding Mode Identification and Affinity Improvement of an LRR Protein Binder without Structure Determination

Author:

Choi YoonjooORCID,Jeong SukyoORCID,Choi Jung-Min,Ndong Christian,Bailey-Kellogg ChrisORCID,Griswold Karl E.ORCID,Kim Hak-SungORCID

Abstract

AbstractPrecise binding mode identification and subsequent affinity improvement without structure determination remain a challenge in the development of therapeutic proteins. However, relevant experimental techniques are generally quite costly, and purely computational methods have been unreliable. Here, we show that integrated computational and experimental epitope localization followed by full-atom energy minimization can yield an accurate complex model structure which ultimately enables effective affinity improvement and redesign of binding specificity. As proof-of-concept, we used a leucine-rich repeat (LRR) protein binder, called a repebody (Rb), that specifically recognizes human IgG1 (hIgG1). We performed computationally-guided identification of the Rb:hIgG1 binding mode and leveraged the resulting model to reengineer the Rb so as to significantly increase its binding affinity for hIgG1 as well as redesign its specificity toward multiple IgGs from other species. Experimental structure determination verified that our Rb:hIgG1 model closely matched the co-crystal structure. Using a benchmark of other LRR protein complexes, we further demonstrated that the present approach may be broadly applicable to proteins undergoing relatively small conformational changes upon target binding.Author SummaryIt is quite challenging for computational methods to determine how proteins interact and to design mutations to alter their binding affinity and specificity. Despite recent advances in computational methods, however, in silico evaluation of binding energies has proven to be extremely difficult. We show that, in the case of protein-protein interactions where only small structural changes occur upon target binding, an integrated computational and experimental approach can identify a binding mode and drive reengineering efforts to improve binding affinity or specificity. Using as a model system a leucine-rich repeat (LRR) protein binder that recognizes human IgG1, our approach yielded a model of the protein complex that was very similar to the subsequently experimentally determined co-crystal structure, and enabled design of variants with significantly improved IgG1 binding affinity and with the ability to recognize IgG1 from other species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3