Global redistribution and local migration in semi-discrete host-parasitoid population dynamic models

Author:

Emerick BrooksORCID,Singh AbhyudaiORCID

Abstract

ABSTRACTHost-parasitoid population dynamics is often probed using a semi-discrete/hybrid modeling framework. Here, the update functions in the discrete-time model connecting year-to-year changes in the population densities are obtained by solving ordinary differential equations that mechanistically describe interactions when hosts become vulnerable to parasitoid attacks. We use this semi-discrete formalism to study two key spatial effects: local movement (migration) of parasitoids between patches during the vulnerable period; and yearly redistribution of populations across patches outside the vulnerable period. Our results show that in the absence of any redistribution, constant density-independent migration and parasitoid attack rates are unable to stabilize an otherwise unstable host-parasitoid population dynamics. Interestingly, inclusion of host redistribution (but not parasitoid redistribution) before the start of the vulnerable period can lead to stable coexistence of both species. Next, we consider a Type-III functional response (parasitoid attack rate increases with host density), where the absence of any spatial effects leads to a neutrally stable host-parasitoid equilibrium. As before, density-independent parasitoid migration by itself is again insufficient to stabilize the population dynamics and host redistribution provides a stabilizing influence. Finally, we show that a Type-III functional response combined with density-dependent parasitoid migration leads to stable coexistence, even in the absence of population redistributions. In summary, we have systematically characterized parameter regimes leading to stable/unstable population dynamics with different forms of spatial heterogeneity coupled to the parasitoid’s functional response using mechanistically formulated semi-discrete models.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

1. Migration Alone Can Produce Persistence of Host-Parasitoid Models

2. Stabilizing effects in spatial parasitoid–host and predator–prey models: a review

3. T. Bukovinszky , E.H. Poelman , A. Kamp , L. Hemerik , P. Georgios , and M. Dicke , Plants under multiple herbivory: consequences for parasitoid search behaviour and foraging efficiency, Animal Behaviour (2012), pp. 501–509.

4. The Spatial Dynamics of Host--Parasitoid Systems

5. Host–parasitoid spatial ecology: a plea for a landscape-level synthesis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3