Author:
Palka Christina,Forino Nicholas M.,Hentschel Jendrik,Das Rhiju,Stone Michael D.
Abstract
AbstractTelomeres safeguard the genome by suppressing illicit DNA damage responses at chromosome termini. In order to compensate for incomplete DNA replication at telomeres, most continually dividing cells, including many cancers, express the telomerase ribonucleoprotein (RNP) complex. Telomerase maintains telomere length by catalyzing de novo synthesis of short DNA repeats using an internal telomerase RNA (TR) template. TRs from diverse species harbor structurally conserved domains that contribute to RNP biogenesis and function. In vertebrate TRs, the conserved regions 4 and 5 (CR4/5) fold into a three-way junction (3WJ) that binds directly to the telomerase catalytic protein subunit and is required for telomerase function. We have analyzed the structural properties of the human TR (hTR) CR4/5 domain using a combination of in vitro chemical mapping, endogenous RNP assembly assays, and single-molecule structural analysis. Our data suggest that a functionally essential stem loop within CR4/5 is not stably folded in the absence of the telomerase reverse transcriptase protein subunit in vitro. Rather, the hTR CR4/5 domain adopts a heterogeneous ensemble of conformations. RNA structural engineering intended to bias the folding landscape of the hTR CR4/5 demonstrates that a stably folded 3WJ motif is necessary but not sufficient to promote assembly of a functional RNP complex. Finally, single-molecule measurements on the hTR CR4/5 domain show that RNP assembly selects for a conformation that is not the major population in the heterogeneous free RNA ensemble, suggesting that non-canonical hTR folds may be required during telomerase biogenesis.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献