Scrambling the skin: Simulated Skin Re-Arrangement Using Apparent Motion

Author:

Seizova-Cajic TatjanaORCID,Ludvigsson Sandra,Sourander Birger,Popov Melinda,Taylor Janet L

Abstract

I.ABSTRACTAn age-old hypothesis proposes that object motion across the receptor surface organizes sensory maps (Lotze, 19th century). Skin patches learn their relative positions from the order in which they are stimulated during motion events. We test this idea by reversing the local motion within a 6-point apparent motion sequence along the forearm. In the ‘Scrambled’ sequence, two middle locations were touched in reversed order (1-2-4-3-5-6, followed by 6-5-3-4-2-1, in a continuous loop). This created a local acceleration, a double U-turn, within an otherwise constant-velocity motion, as if the physical location of skin patches 3 and 4 was surgically swapped. The control condition, ‘Orderly’, proceeded at constant velocity at inter-stimulus onset interval (ISOI) of 120 ms. In the test, our twenty participants reported motion direction between the two middle tactors, presented on their own at 75, 120 or 190-ms ISOI. Results show degraded motion discrimination following exposure to Scrambled pattern: for the 120-ms test stimulus, it was 0.31 d’ weaker than following Orderly conditioning (p = .007). This is the aftereffect we expected; its maximal expression would be a complete reversal in perceived motion direction between locations 3 and 4 for either motion direction. We propose that the somatosensory system was beginning to ‘correct’ reversed local motion to uncurl and remove the U-turns that always occurred on the same part of the receptor surface. Such de-correlation between accelerations and their location on the sensory surface is one possible mechanism for organization of sensory maps.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3