Ca2+ ions promote fusion of Middle East Respiratory Syndrome coronavirus with host cells and increase infectivity

Author:

Straus Marco R.ORCID,Tang Tiffany,Lai Alex L.,Flegel Annkatrin,Bidon Miya,Freed Jack H.,Daniel Susan,Whittaker Gary R.

Abstract

AbstractMiddle East respiratory syndrome coronavirus (MERS-CoV) is a major emerging zoonotic infectious disease. Since its first outbreak in 2012, the virus has repeatedly transmitted from camels to humans with 2,468 confirmed cases, causing 851 deaths. To date, there are no efficacious drugs and vaccines against MERS-CoV, increasing its potential to cause a public health emergency. A critical step in the life cycle of MERS-CoV is the fusion with the host cell with its spike (S) protein as main determinant of viral entry. Proteolytic cleavage of S exposes its fusion peptide (FP), which initiates membrane fusion. Previous studies on the related severe acute respiratory syndrome coronavirus (SARS-CoV) FP have shown that calcium (Ca2+) plays an important role for fusogenic activity via a Ca2+ binding pocket with conserved glutamic acid (E) and aspartic acid (D) residues. SARS-CoV and MERS-CoV FP share a high sequence homology and here, we investigated whether Ca2+ is required for MERS-CoV fusion by substituting E and D residues in the MERS-CoV FP with neutrally charged alanines. Upon verifying mutant cell surface expression and proteolytic cleavage, we tested the mutants ability to mediate infection of pseudo-particles (PPs) on host cells without and with Ca2+. Our results demonstrate that intracellular Ca2+ enhances MERS-CoV WT PPs infection by approximately two-fold and that E891 is a crucial residue for Ca2+ interaction. Electron spin resonance revealed that this enhancement could be attributed to Ca2+ increasing MERS-CoV FP fusion-relevant membrane ordering. Intriguingly, isothermal calorimetry titration showed that MERS-CoV FP binds one Ca2+, as opposed to SARS-CoV FP which binds two. Our data suggests that there are significant differences in FP-Ca2+ interactions of MERS-CoV and SARS-CoV FP despite their high sequence similarity and that the number of Ca2+ ions interacting with the FP has implications on the fusion dynamics of the virus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3