Population Responses Represent Vocalization Identity, Intensity, and Signal-to-Noise Ratio in Primary Auditory Cortex

Author:

Ni Ruiye,Bender David A.,Barbour Dennis L.ORCID

Abstract

AbstractThe ability to process speech signals under challenging listening environments is critical for speech perception. Great efforts have been made to reveal the underlying single unit encoding mechanism. However, big variability is usually discovered in single-unit responses, and the population coding mechanism is yet to be revealed. In this study, we are aimed to study how a population of neurons encodes behaviorally relevant signals subjective to change in intensity and signal-noise-ratio (SNR). We recorded single-unit activity from the primary auditory cortex of awake common marmoset monkeys (Callithrix jacchus) while delivering conspecific vocalizations degraded by two different background noises: broadband white noise (WGN) and vocalization babble (Babble). By pooling all single units together, the pseudo-population analysis showed the population neural responses track intra- and inter-trajectory angle evolutions track vocalization identity and intensity/SNR, respectively. The ability of the trajectory to track the vocalizations attribute was degraded to a different degree by different noises. Discrimination of neural populations evaluated by neural response classifiers revealed that a finer optimal temporal resolution and longer time scale of temporal dynamics were needed for vocalizations in noise than vocalizations at multiple different intensities. The ability of population responses to discriminate between different vocalizations were mostly retained above the detection threshold.Significance StatementHow our brain excels in the challenge of precise acoustic signal encoding against noisy environment is of great interest for scientists. Relatively few studies have strived to tackle this mystery from the perspective of neural population responses. Population analysis reveals the underlying neural encoding mechanism of complex acoustic stimuli based upon a pool of single units via vector coding. We suggest the spatial population response vectors as one important way for neurons to integrate multiple attributes of natural acoustic signals, specifically, marmots’ vocalizations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3