Spatial Control of Neuronal Metabolism Through Glucose-Mediated Mitochondrial Transport Regulation

Author:

Agrawal AnamikaORCID,Pekkurnaz Gulcin,Koslover Elena F.ORCID

Abstract

Eukaryotic cells modulate their metabolism by organizing metabolic components in response to varying nutrient availability and energy demands. In the axons of mammalian neurons, mitochondria have been shown to respond to glucose levels by halting active transport preferentially in high glucose regions. Here, we employ quantitative modeling to explore the physical limits on spatial organization of organelles through such regulated stopping of processive motion, as well as the consequences to cellular metabolism. We delineate the role of key parameters, including cellular glucose uptake and consumption rates, that are expected to modulate mitochondrial distribution and metabolic response in spatially varying glucose conditions. Our quantitative estimates indicate that physiological brain glucose levels fall within the limited range necessary for metabolic enhancement, making this a plausible regulatory mechanism for neuronal metabolic flexibility in the presence of spatially heterogeneous glucose. These findings highlight the role of spatial organization in the regulation of neuronal metabolism, while providing a quantitative framework for the establishment of such organization by control of organelle trafficking.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3