Abstract
AbstractMicrobial biocatalysis in organic solvents such as ionic liquids (ILs) is attractive for making fuels and chemicals from complex substrates including lignocellulosic biomass. However, low IL concentrations of 0.5-1.0 % (v/v) can drastically inhibit microbial activity. In this study, we engineered an exceptionally robust oleaginous yeastYarrowia lipolytica, YlCW001, by adaptive laboratory evolution (ALE). The mutant YlWC001 shows robust growth in up to 18% (v/v) 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), which makes it the most IL-tolerant microorganism published to our knowledge. Remarkably, YlCW001 exhibits broad tolerance in most commonly used hydrophilic ILs beyond [EMIM][OAc]. Scanning electron microscopy revealed that ILs significantly damage cell wall and/or membrane of wildtypeY. lipolyticawith observed cavities, dents, and wrinkles while YlCW001 maintains healthy morphology even in high concentrations of ILs up to 18% (v/v). By performing comprehensive metabolomics, lipidomics, and transcriptomics to elucidate this unique phenotype, we discovered that both wildtypeY. lipolyticaand YlCW001 reconfigured membrane composition (e.g., glycerophospholipids and sterols) and cell wall structure (e.g., chitin) under IL-stressful environments. By probing the steroid pathway at transcriptomic, enzymatic, and metabolic levels, we validated that sterols (i.e., ergosterol) are a key component of the cell membrane that enablesY. lipolyticato resist IL-responsive membrane damage and hence tolerate high IL concentrations. This study provides a better understanding of exceptional robustness ofY. lipolyticathat can be potentially harnessed as a microbial manufacturing platform for production of fuels and chemicals in organic solvents.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献