Microtubule-dependent orchestration of centriole amplification in brain multiciliated cells

Author:

Boudjema Amélie-Rose,Balagué Rémi,Jewett Cayla EORCID,LoMastro Gina M,Mercey Olivier,Jord Adel Al,Faucourt Marion,Schaeffer Alexandre,Noûs Camille,Delgehyr NathalieORCID,Holland Andrew JORCID,Spassky Nathalie,Meunier Alice

Abstract

AbstractCentriole number must be restricted to two in cycling cells to avoid pathological cell divisions. Multiciliated cells (MCC), however, need to produce a hundred or more centrioles to nucleate the same number of motile cilia required for fluid flow circulation. These centrioles are produced by highjacking cell cycle and centriole duplication programs. However, how the MCC progenitor handles such a massive number of centrioles to finally organize them in an apical basal body patch is unclear. Here, using new cellular models and high-resolution imaging techniques, we identify the microtubule network as the bandleader, and show how it orchestrates the process in space and in time. Organized by the pre-existing centrosome at the start of amplification, microtubules build a nest of centriolar components from which procentrioles emerge. When amplification is over, the centrosome’s dominance is lost as new centrioles mature and become microtubule nucleators. Microtubules then drag all the centrioles to the nuclear membrane, assist their isotropic perinuclear disengagement and their subsequent collective apical migration. These results reveal that in brain MCC as in cycling cells, the same dynamics - from the centrosome to the cell pole via the nucleus-exists, is the result of a reflexive link between microtubules and the progressive maturation of new centrioles, and participates in the organized reshaping of the entire cytoplasm. On the other hand, new elements described in this work such as microtubule-driven organization of a nest, identification of a spatio-temporal progression of centriole growth and microtubule-assisted disengagement, may shed new light on the centriole duplication program.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3