A Machine Learning Framework to Identify the Correlates of Disease Severity in Acute Arbovirus Infection

Author:

Herder VanessaORCID,Caporale Marco,MacLean Oscar A,Pintus Davide,Huang Xinyi,Nomikou Kyriaki,Palmalux Natasha,Nichols Jenna,Scivoli Rosario,Boutell ChrisORCID,Taggart Aislynn,Allan Jay,Malik Haris,Ilia Georgios,Gu Quan,Ronchi Gaetano Federico,Furnon Wilhelm,Zientara Stephan,Bréard Emmanuel,Antonucci Daniela,Capista Sara,Giansante Daniele,Cocco Antonio,Mercante Maria Teresa,Di Ventura Mauro,Filipe Ana Da Silva,Puggioni Giantonella,Sevilla Noemi,Stewart Meredith E.,Ligios Ciriaco,Palmarini Massimo

Abstract

AbstractMost viral diseases display a variable clinical outcome due to differences in virus strain virulence and/or individual host susceptibility to infection. Understanding the biological mechanisms differentiating a viral infection displaying severe clinical manifestations from its milder forms can provide the intellectual framework toward therapies and early prognostic markers. This is especially true in arbovirus infections, where most clinical cases are present as mild febrile illness. Here, we used a naturally occurring vector-borne viral disease of ruminants, bluetongue, as an experimental system to uncover the fundamental mechanisms of virus-host interactions resulting in distinct clinical outcomes. As with most viral diseases, clinical symptoms in bluetongue can vary dramatically. We reproduced experimentally distinct clinical forms of bluetongue infection in sheep using three bluetongue virus (BTV) strains (BTV-1IT2006, BTV-1IT2013and BTV-8FRA2017). Infected animals displayed clinical signs varying from clinically unapparent, to mild and severe disease. We collected and integrated clinical, haematological, virological, and histopathological data resulting in the analyses of 332 individual parameters from each infected and uninfected control animal. We subsequently used machine learning to identify the key viral and host processes associated with disease pathogenesis. We identified five different fundamental processes affecting the severity of bluetongue: (i) virus load and replication in target organs, (ii) modulation of the host type-I IFN response, (iii) pro-inflammatory responses, (iv) vascular damage, and (v) immunosuppression. Overall, our study using an agnostic machine learning approach, can be used to prioritise the different pathogenetic mechanisms affecting the disease outcome of an arbovirus infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3