Corticothalamic modelling of sleep neurophysiology with applications to mobile EEG

Author:

Morshedzadeh TahaORCID,Kadak Kevin,Bastiaens Sorenza P.,Oveisi M. Parsa,Momi DavideORCID,Wang Zheng,Harita ShreyasORCID,Jaude Maurice AbouORCID,Aimone Christopher A.,Mann SteveORCID,Hill Sean L.ORCID,Griffiths John D.ORCID

Abstract

AbstractRecent developments in mathematical modelling of EEG data enable estimation and tracking of otherwise-inaccessible neurophysiological parameters over the course of a night’s sleep. Likewise, advancements in wearable electronics have enabled easier & more affordable at-home collection of sleep EEG data. The convergence of these two advances, namely neurophysiological modelling for mobile sleep EEG, has the potential to significantly improve sleep assessments in research and the clinic. However, this subject area has received limited attention in existing literature. To address this, we used an established mathematical model of the corticothalamic system to analyze EEG power spectra from 5 datasets, spanning from in-lab, research-grade systems to at-home mobile EEG devices. In the present work, we compare the convergent and divergent features of the data and the estimated physiological model parameters. While data quality and characteristics differ considerably, several key patterns consistent with previous theoretical and empirical work are observed. During the transition from lighter to deeper NREM stages, i) the exponent of the aperiodic (1/f) spectral component is increased, ii) bottom-up thalamocortical drive is reduced, iii) corticocortical connection strengths are increased. This effect, which we observe in healthy individuals across all 5 datasets, is interestingly absent in individuals taking SSRI antidepressants, suggesting possible effects of ascending neuromodulatory systems on corticothalamic oscillations. Our results provide a proof-of-principle for the utility and feasibility of this physiological modelling-based approach to analyzing data from mobile EEG devices, providing a mechanistic measure of brain physiology during sleep at home or in the lab.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3