Identifying high-risk pre-term pregnancies using the fetal heart rate and machine learning

Author:

Davis Jones GabrielORCID,Cooke WilliamORCID,Vatish ManuORCID

Abstract

AbstractIntroductionFetal heart rate (FHR) monitoring is one of the commonest and most affordable tests performed during pregnancy worldwide. It is critical for evaluating the health status of the baby, providing real-time insights into the physiology of the fetus. While the relationship between patterns in these signals and adverse pregnancy outcomes is well-established, human identification of these complex patterns remains sub-optimal, with experts often failing to recognise babies at high-risk of outcomes such as asphyxia, growth restriction and stillbirth. These outcomes are especially relevant in low- and middle-income countries where an estimated 98% of perinatal deaths occur. Pre-term birth complications are also the leading cause of death in children ¡5 years of age, 75% of which can be prevented. While advances have been made in developing low-cost digital solutions for antenatal fetal monitoring, there is still substantial progress to be made in developing tools for the identification of high-risk, adverse outcome pre-term pregnancies using these FHR systems. In this study, we have developed the first machine learning algorithm for the identification of high-risk preterm pregnancies with associated adverse outcomes using fetal heart rate monitoring.MethodsWe sourced antepartum fetal heart rate traces from high-risk, preterm pregnancies that were assigned at least one of ten adverse conditions. These were matched with normal pregnancies delivered at term. Using an automated, clinically-validated algorithm, seven distinct fetal heart rate patterns were extracted from each trace, subsequently filtered for outliers and normalized. The data were split into 80% for model development and 20% for validation. Six machine learning algorithms were trained using k-fold cross-validation to identify each trace as either normal or high-risk preterm. The best-performing algorithm was further evaluated using the validation dataset based on metrics including the AUC, sensitivity, and specificity at three distinct classification thresholds. Additional assessments included decision curve analysis and gestational age-specific and outcome-specific performance evaluations.ResultsWe analysed antepartum fetal heart rate recordings from 4,867 high-risk, pre-term pregnancies with adverse outcomes and 4,014 normal pregnancies. Feature extraction and preprocessing revealed significant differences between the groups (p<0.001). The random forest classifier was the most effective model, achieving an AUC of 0.88 (95% CI 0.87–0.88). When evaluating specific adverse outcomes, the median AUC was 0.85 (IQR 0.81–0.89) and the model consistently exceeded an AUC of 0.80 across all gestational ages. The model’s robustness was confirmed on the validation dataset with an AUC of 0.88 (95% CI 0.86–0.90) and a Brier score of 0.14. Decision curve analysis showed the model surpassed both the treat-none and treat-all strategies over most probability thresholds (0.11–1.0). Performance metrics when using the Youden index were as follows: sensitivity 76.2% (95% CI 72.6–80.5%), specificity 87.5% (95% CI 83.3–91.0), F1 score 81.7 (95% CI 79.6–83.9), and Cohen’s kappa 62.8 (95% CI 59.6–66.4), indicating high discriminative ability between pregnancy outcomes.ConclusionsOur study successfully demonstrated machine learning algorithms are capable of identifying high-risk preterm pregnancies with associated adverse outcomes through fetal heart rate monitoring. These findings demonstrate the potential of machine learning in enhancing the accuracy and effectiveness of antenatal fetal monitoring, particularly for high-risk cases where timely intervention is crucial. This algorithm could substantially improve pregnancy outcome prediction and consequently, maternal and neonatal care, especially in low-to middle-income countries where the burden of adverse outcomes is high.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3