Proteomic analysis uncovers clusterin-mediated disruption of actin-based contractile machinery in the trabecular meshwork to lower intraocular pressure

Author:

Soundararajan Avinash,Wang Ting,Pattabiraman Padmanabhan PORCID

Abstract

AbstractGlaucoma, a major cause of blindness, is characterized by elevated intraocular pressure (IOP) due to improper drainage of aqueous humor via the trabecular meshwork (TM) outflow pathway. Our recent work identified that loss of clusterin resulted in elevated IOP. This study delves deeper to elucidate the role of clusterin in IOP regulation. Employing anex vivohuman anterior segment perfusion model, we established that constitutive expression and secretion as well as exogenous addition of clusterin can significantly lower IOP. Interestingly, clusterin significantly lowered transforming growth factor β2 (TGFβ2)-induced IOP elevation. This effect was linked to the suppression of extracellular matrix (ECM) deposition and, highlighting the crucial role of clusterin in maintaining ECM equilibrium. A comprehensive global proteomic approach revealed the broad impact of clusterin on TM cell structure and function by identifying alterations in protein expression related to cytoskeletal organization, protein processing, and cellular mechanics, following clusterin induction. These findings underscore the beneficial modulation of TM cell structure and functionality by clusterin. Specifically, clusterin influences the actin-cytoskeleton and focal adhesion dynamics, which are instrumental in cell contractility and adhesion processes. Additionally, it suppresses the activity of proteins critical in TGFβ2, G-protein, and JAK-STAT signaling pathways, which are vital for the regulation of ocular pressure. By delineating these targeted effects of clusterin within the TM outflow pathway, our findings pave the way for novel treatment strategies aimed at mitigating the progression of ocular hypertension and glaucoma through targeted molecular interventions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3