Epithelial folding through local degradation of an elastic basement membrane plate

Author:

Guerra Santillán K. YanínORCID,Jantzen Caroline,Dahmann ChristianORCID,Fischer-Friedrich ElisabethORCID

Abstract

Epithelia are polarised layers of cells that line the outer and inner surfaces of organs. At the basal side, the epithelial cell layer is supported by a basement membrane, which is a thin polymeric layer of self-assembled extracellular matrix (ECM) that tightly adheres to the basal cell surface. Proper shaping of epithelial layers is an important prerequisite for the development of healthy organs during the morphogenesis of an organism. Experimental evidence indicates that local degradation of the basement membrane drives epithelial folding. Here, we present a coarse-grained plate theory model of the basement membrane that assumes force balance between i) cell-transduced active forces and ii) deformation-induced elastic forces. We verify key assumptions of this model through experiments in theDrosophilawing disc epithelium and demonstrate that the model can explain the emergence of outward epithelial folds upon local plate degradation. Our model accounts for local degradation of the basement membrane as a mechanism for the generation of epithelial folds in the absence of epithelial growth.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis

2. The cellular basis of epithelial morphogenesis;A review. Tissue and Cell,1988

3. On folding morphogenesis, a mechanical problem;Phil. Trans. Roy. Soc. B: Biological Sciences,2020

4. Forces in Tissue Morphogenesis and Patterning

5. Alberts B , et al. (2002) Molecular Biology of the Cell. (Garland Science), 4th edition.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3