Fast and accurate modeling and design of antibody-antigen complex using tFold

Author:

Wu Fandi,Zhao YuORCID,Wu JiaxiangORCID,Jiang Biaobin,He Bing,Huang Longkai,Qin Chenchen,Yang Fan,Huang Ningqiao,Xiao Yang,Wang Rubo,Jia Huaxian,Rong Yu,Liu Yuyi,Lai Houtim,Xu Tingyang,Liu Wei,Zhao Peilin,Yao JianhuaORCID

Abstract

AbstractAccurate prediction of antibody-antigen complex structures holds significant potential for advancing biomedical research and the design of therapeutic antibodies. Currently, structure prediction for protein monomers has achieved considerable success, and promising progress has been made in extending this achievement to the prediction of protein complexes. However, despite these advancements, fast and accurate prediction of antibody-antigen complex structures remains a challenging and unresolved issue. Existing end-to-end prediction methods, which rely on homology and templates, exhibit sub-optimal accuracy due to the absence of co-evolutionary constraints. Meanwhile, conventional docking-based methods face difficulties in identifying the contact interface between the antigen and antibody and require known structures of individual components as inputs. In this study, we present a fully end-to-end approach for three-dimensional (3D) atomic-level structure predictions of antibodies and antibody-antigen complexes, referred to as tFold-Ab and tFold-Ag, respectively. tFold leverages a large protein language model to extract both intra-chain and inter-chain residue-residue contact information, as well as evolutionary relationships, avoiding the time-consuming multiple sequence alignment (MSA) search. Combined with specially designed modules such as the AI-driven flexible docking module, it achieves superior performance and significantly enhanced speed in predicting both antibody (1.6% RMSD reduction in the CDR-H3 region, thousand times faster) and antibody-antigen complex structures (37% increase in DockQ score, over 10 times faster), compared to AlphaFold-Multimer. Given the performance and speed advantages, we further extend the capability of tFold for structure-based virtual screening of binding antibodies, as well as de novo co-design of both structure and sequence for therapeutic antibodies. The experiment results demonstrate the potential of tFold as a high-throughput tool to enhance processes involved in these tasks. To facilitate public access, we release code and offer a web service for antibody and antigen-antibody complex structure prediction, which is available athttps://drug.ai.tencent.com/en.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3