Statistical analysis for the development of a Deep Learning model for classification of images with TDP-43 pathology

Author:

Muñoz AzucenaORCID,Oliveira VascoORCID,Vallejo MartaORCID

Abstract

Diagnosing Amyotrophic Lateral Sclerosis (ALS) remains a hand challenge due to its inherent heterogeneity. Notably, the occurrence of TDP-43 cytoplasmic aggregation in approximately 95% of ALS cases has emerged as a potential indicative hallmark. In order to develop deep learning models capable of distinguishing TDP-43 proteinopathic samples from their healthy counterparts, a comprehensive understanding of the sample set becomes imperative, particularly when the sample size is limited. The samples in question encompassed images obtained via an immunofluorescence procedure, employing super high-resolution microscopy coupled with meticulous processing. A feature-extracted dataset was created to collect meaningful features from every sample to approach three different classification problems (TDP-43 Pathology, TDP-43 Pathology Grades and ALS) based on the number of red and pink pixels, signifying cytoplasmic and nuclear TDP-43 presence. A series of diverse statistical approaches were undertaken. However, definitive outcomes remained elusive, although it was suggested that a classification based on the presence of TDP-43 proteinopathy was better than the one based on the presence of ALS for training the model.The dataset was reduced by eliminating the problematic samples through curation. Analyses were repeated using t-student tests and ANOVA, and visualisation of patient inter-variability was performed using hierarchical clustering. The TDP-43 pathology classification results showed significant differences in the number of red and pink pixels, the total amount of protein and the cytoplasmic and nuclear proportions between healthy and pathological samples between groups. These findings suggested that images classified according to the presence of TDP-43 proteinopathy are more suitable for training deep learning models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3