Common data models to streamline metabolomics processing and annotation, and implementation in a Python pipeline

Author:

Mitchell Joshua M.,Chi Yuanye,Thapa Maheshwor,Pang Zhiqiang,Xia Jianguo,Li ShuzhaoORCID

Abstract

AbstractTo standardize metabolomics data analysis and facilitate future computational developments, it is essential is have a set of well-defined templates for common data structures. Here we describe a collection of data structures involved in metabolomics data processing and illustrate how they are utilized in a full-featured Python-centric pipeline. We demonstrate the performance of the pipeline, and the details in annotation and quality control using large-scale LC-MS metabolomics and lipidomics data and LC-MS/MS data. Multiple previously published datasets are also reanalyzed to showcase its utility in biological data analysis. This pipeline allows users to streamline data processing, quality control, annotation, and standardization in an efficient and transparent manner. This work fills a major gap in the Python ecosystem for computational metabolomics.Author SummaryAll life processes involve the consumption, creation, and interconversion of metabolites. Metabolomics is the comprehensive study of these small molecules, often using mass spectrometry, to provide critical information of health and disease. Automated processing of such metabolomics data is desired, especially for the bioinformatics community with familiar tools and infrastructures. Despite of Python’s popularity in bioinformatics and machine learning, the Python ecosystem in computational metabolomics still misses a complete data pipeline. We have developed an end-to-end computational metabolomics data processing pipeline, based on the raw data preprocessor Asari [1]. Our pipeline takes experimental data in .mzML or .raw format and outputs annotated feature tables for subsequent biological interpretation. We demonstrate the application of this pipeline to multiple metabolomics and lipidomics datasets. Accompanying the pipeline, we have designed a set of reusable data structures, released as the MetDataModel package, which shall promote more consistent terminology and software interoperability in this area.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3