Abstract
AbstractHuman corticospinal excitability modulates during movement, when muscles are active, but also at rest, when muscles are not active. These changes in resting motor system excitability can be transient or longer lasting. Evidence from transcranial magnetic stimulation (TMS) studies suggests even relatively short periods of motor learning on the order of minutes can have lasting effects on resting corticospinal excitability. Whether individuals are able to return corticospinal excitability to out-of-task resting levels during the intertrial intervals of behavioral tasks that do not include an intended motor learning component is an important question. Here, in twenty-six healthy young adults, we used single-pulse TMS and electromyography (EMG) to measure motor evoked potentials (MEPs) during two different resting contexts: 1) intertrial intervals of a choice-reaction time task, and 2) outside the task. In both contexts, five TMS intensities were used to evaluate possible differences in recruitment of corticospinal output. We hypothesized resting state excitability would be greater during intertrial intervals than out-of-task rest, reflected in larger MEP amplitudes. Contrary to our hypothesis, we observed no significant difference in MEP amplitudes between out-of-task rest and in-task intertrial intervals, and instead found evidence of equivalence, indicating that humans are able to return to a stable motor resting state within seconds after a response. These data support the interpretation that rest is a uniform motor state in the healthy nervous system. In the future, our data may be a useful reference for motor disorder populations with an impaired ability to return to rest.
Publisher
Cold Spring Harbor Laboratory