Long-term survival of asexualZymoseptoria triticispores in the environment

Author:

Kay William T.ORCID,O’Neill P.,Gurr Sarah J.ORCID,Fones Helen N.ORCID

Abstract

The fungal phytopathogenZymoseptoria tritici, causal agent of the economically damaging Septoria tritici blotch of wheat, is different from most foliar fungal pathogens in that its germination occurs slowly and apparently randomly after arrival on the leaf surface and is followed by a potentially prolonged period of epiphytic growth and even reproduction, during which no feeding structures are formed by the fungus. Thus, understanding the cues for germination and the mechanisms that underpin survival in low-nutrient environments could provide key new avenues for disease control. In this work, we examine survival, culturability, and virulence of spores following transfer from a high nutrient environment to water. We find that a sub-population ofZ. triticispores can survive and remain virulent for at least 7 weeks in water alone, during which time multicellular structures split to single cells. The fungus relies heavily on stored lipids; however, if cell suspensions in water are dried, the cells survive without lipid utilisation. Changes in gene expression in the first hours after suspension in water reflect adaptation to stress, while longer term starvation (7 days) induces changes particularly in primary metabolism and cytochrome P450 (CYP) gene expression. Importantly, we also found thatZ. triticispores are equally or better able to survive in soil as in water, and that rain-splash occurring 49 days after soil inoculation can transfer cells to wheat seedlings growing in inoculated soil and cause Septoria leaf blotch disease.

Publisher

Cold Spring Harbor Laboratory

Reference87 articles.

1. Is Zymoseptoria tritici a hemibiotroph?

2. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis;PLoS Genetics,2011

3. A review of the known unknowns in the early stages of septoria tritici blotch disease of wheat;Plant Pathology,2019

4. A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici;Fungal Genetics and Biology,2017

5. Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici;Scientific Reports,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3