Voluntary co-contraction of ankle muscles alters motor unit discharge characteristics and reduces estimates of persistent inward currents

Author:

Gomes Matheus M.ORCID,Jenz Sophia T.ORCID,Beauchamp James A.ORCID,Negro FrancescoORCID,Heckman C.J.,Pearcey Gregory E.P.ORCID

Abstract

ABSTRACTMotoneuronal persistent inward currents (PICs) are both facilitated by neuromodulatory inputs and highly sensitive to local inhibitory circuits (e.g., Ia reciprocal inhibition). Methods aimed to increase group Ia reciprocal inhibition from the antagonistic muscle have been successful in decreasing PICs, and the diffuse actions of neuromodulators released during activation of remote muscles have increased PICs. However, it remains unknown how motoneurons function in the presence of simultaneous excitatory and inhibitory commands. To probe this topic, we investigated motor unit (MU) discharge patterns and estimated PICs during voluntary co-contraction of ankle muscles, which simultaneously demands the contraction of agonist-antagonist pairs. Twenty young adults randomly performed triangular ramps (10s up and down) of both co-contraction (simultaneous dorsiflexion and plantarflexion) and isometric dorsiflexion to a peak of 30% of their maximum muscle activity from a maximal voluntary contraction. Motor unit spike trains were decomposed from high-density surface electromyography recorded over the tibialis anterior (TA) using blind source separation algorithms. Voluntary co-contraction altered motor unit discharge rate characteristics, decreasing estimates of PICs by 20% (4.47 pulses per second (pps) vs 5.57 pps during isometric dorsiflexion). These findings suggest that, during voluntary co-contraction, the inhibitory input from the antagonist muscle overcomes the additional excitatory and neuromodulatory drive that may occur due to the co-contraction of the antagonist muscle, which constrains PIC behavior.KEY POINTSVoluntary co-contraction is a unique motor behavior that concurrently provides increases in excitatory and inhibitory inputs to motoneurons.During co-contraction of agonist-antagonist pairs, agonist motor unit discharge characteristics are altered, consistent with reductions in persistent inward current magnitude.Reciprocal inhibition from the antagonist likely becomes proportional to the increase in neural drive to the agonist, dampening the magnitude of persistent inward currents.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3