Thermo-amplifier circuit in probioticE. colifor stringently temperature-controlled release of a novel antibiotic

Author:

Dey SourikORCID,Seyfert Carsten E.ORCID,Fink-Straube Claudia,Kany Andreas M.ORCID,Müller RolfORCID,Sankaran ShrikrishnanORCID

Abstract

AbstractPeptide drugs have seen rapid advancement in biopharmaceutical development, with over 80 candidates approved globally. Despite their therapeutic potential, the clinical translation of peptide drugs is hampered by challenges in production yields and stability. Engineered bacterial therapeutics is a unique approach being explored to overcome these issues by using bacteria to produce and deliver therapeutic compounds at the body site of use. A key advantage of this technology is the possibility to control drug delivery within the body in real time using genetic switches. However, the performance of such genetic switches suffers when used to control drugs that require post-translational modifications or are toxic to the host. In this study, these challenges were experienced when attempting to establish a thermal switch for the production of a ribosomally synthesized and post-translationally modified peptide antibiotic, darobactin, in probioticE. coli. These challenges were overcome by developing a thermo-amplifier circuit that combined the thermal-switch with a T7 RNA Polymerase and its promoter that overcame limitations imposed by the host transcriptional machinery due to its orthogonality to it. This circuit enabled production of pathogen-inhibitory levels of darobactin at 40°C while maintaining leakiness below the detection limit at 37°C. More impressively, the thermo-amplifier circuit sustained production beyond the thermal induction duration. Thus, raised temperature for 2 h was sufficient for the bacteria to produce pathogen-inhibitory levels of darobactin even in the physiologically relevant simulated conditions of the intestines that include bile salts and low nutrient levels.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

1. Therapeutic peptides: current applications and future directions;Signal transduction and targeted therapy,2022

2. Pereira AJ , de Campos LJ , Xing H , Conda-Sheridan M . Peptide-based therapeutics: challenges and solutions. Medicinal Chemistry Research. 2024 Jun 27:1–6.

3. Recent advances in the development of therapeutic peptides;Trends in Pharmacological Sciences,2023

4. The future of peptide-based drugs;Chemical biology & drug design,2013

5. A new antibiotic selectively kills Gram-negative pathogens

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3