Multi-class Modeling Identifies Shared Genetic Risk for Late-onset Epilepsy and Alzheimer’s Disease

Author:

Fu MingzhouORCID,Tran Thai,Eskin Eleazar,Lajonchere Clara,Pasaniuc Bogdan,Geschwind Daniel H.,Vossel Keith,Chang Timothy SORCID

Abstract

AbstractBackgroundPrevious studies have established a strong link between late-onset epilepsy (LOE) and Alzheimer’s disease (AD). However, their shared genetic risk beyond theAPOEgene remains unclear. Our study sought to examine the shared genetic factors of AD and LOE, interpret the biological pathways involved, and evaluate how AD onset may be mediated by LOE and shared genetic risks.MethodsWe defined phenotypes using phecodes mapped from diagnosis codes, with patients’ records aged 60-90. A two-step Least Absolute Shrinkage and Selection Operator (LASSO) workflow was used to identify shared genetic variants based on prior AD GWAS integrated with functional genomic data. We calculated an AD-LOE shared risk score and used it as a proxy in a causal mediation analysis. We used electronic health records from an academic health center (UCLA Health) for discovery analyses and validated our findings in a multi-institutional EHR database (All of Us).ResultsThe two-step LASSO method identified 34 shared genetic loci between AD and LOE, including theAPOEregion. These loci were mapped to 65 genes, which showed enrichment in molecular functions and pathways such as tau protein binding and lipoprotein metabolism. Individuals with high predicted shared risk scores have a higher risk of developing AD, LOE, or both in their later life compared to those with low-risk scores. LOE partially mediates the effect of AD-LOE shared genetic risk on AD (15% proportion mediated on average). Validation results from All of Us were consistent with findings from the UCLA sample.ConclusionsWe employed a machine learning approach to identify shared genetic risks of AD and LOE. In addition to providing substantial evidence for the significant contribution of theAPOE-TOMM40-APOC1gene cluster to shared risk, we uncovered novel genes that may contribute. Our study is one of the first to utilize All of Us genetic data to investigate AD, and provides valuable insights into the potential common and disease-specific mechanisms underlying AD and LOE, which could have profound implications for the future of disease prevention and the development of targeted treatment strategies to combat the co-occurrence of these two diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3