Abstract
Phagocytosis is an intensely physical process that depends on the mechanical properties of both the phagocytic cell and its chosen target. Here, we employed differentially deformable hydrogel microparticles to examine the role of cargo rigidity in the regulation of phagocytosis by macrophages. Whereas stiff cargos elicited canonical phagocytic cup formation and rapid engulfment, soft cargos induced an architecturally distinct response, characterized by filamentous actin protrusions at the center of the contact site, slower cup advancement, and frequent phagocytic stalling. Using phosphoproteomics, we identifiedβ2 integrins and their downstream effectors as critical mediators of this mechanically regulated phagocytic switch. Indeed, comparison of wild type andβ2 integrin deficient macrophages indicated that integrin signaling acts as a mechanical checkpoint by shaping filamentous actin to enable distinct phagocytic engulfment strategies. Collectively, these results illuminate the molecular logic of leukocyte mechanosensing and reveal potential avenues for modulating phagocyte function in immunotherapeutic contexts.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献